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ABSTRACT

The assessment of risk from environmental and occupational exposures incorpo-
rates and synthesizes data from a variety of scientific disciplines including toxicology
and epidemiology. Epidemiological data have offered valuable contributions to the
identification of human health hazards, estimation of human exposures, quantifi-
cation of the exposure-response relation, and characterization of risks to specific
target populations including sensitive populations. As with any scientific discipline,
there are some uncertainties inherentin these data; however, the best human health
risk assessments utilize all available information, characterizing strengths and limi-
tations as appropriate. Human health risk assessors evaluating environmental and
occupational exposures have raised concerns about the validity of using epidemi-
ological data for risk assessment due to actual or perceived study limitations. This
article highlights three concerns commonly raised during the development of hu-
man health risk assessments of environmental and occupational exposures: (a) error
in the measurement of exposure, (b) potential confounding, and (c) the interpre-
tation of non-linear or non-monotonic exposure-response data. These issues are of-
ten the content of scientific disagreement and debate among the human health risk
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assessment community, and we explore how these concerns may be contextualized,
addressed, and often ameliorated.

Key Words:  epidemiology, risk assessment, bias, measurement error, confound-
ing, exposure-response, misclassification.

INTRODUCTION

Human health risk assessment (HIIRA) is a process used to estimate the nature
and probability of adverse health effects in humans who may be exposed to chemical
and non-chemical stressors in environmental media (e.g, air, water, soil, or food)
or in the workplace (USEPA 2013). The risk assessment paradigm is comprised
of four steps: hazard identification, exposure assessment, dose—response modeling,
and risk characterization (NRC 1983). A risk assessment may be designed to address
questions such as “What types of health problems may be caused by different en-
vironmental and occupational stressors such as chemicals, microbes, or radiation?”
or “What is the probability that an adverse health effect will occur within a specific
range of concentration or dose of these stressors?” The answers to these questions
and others determine the scope of the human health risk assessment and influence
what actions may be necessary for public health protection from environmental and
occupational hazards. HHRA includes a synthesis of data from a variety of scientific
disciplines including toxicology, epidemiology, industrial hygiene, and exposure sci-
ence. Each of these types of scientific data has strengths as well as limitations for use
in risk assessment.

Epidemiological data can provide valuable contributions to all stages of a HHRA,
including hazard identification, exposure-response evaluation, and risk character-
ization. For several decades, different authors have extensively discussed the chal-
lenges of using epidemiological data in regulatory risk assessment—but have also
emphasized the need to overcome these challenges, as human data provide unique
information beyond what can be gleaned from traditional toxicology-based risk as-
sessments (Gibb ef al. 2002; Goldbohm ef al. 2006; Gordis 1988; Graham ef al. 1995;
Hertz-Picciotto 1995; Johnson 2010; Lavelle ef af. 2012; Samet ef al 1998; Schwartz
2002; Stayner et ol 2002; Whittemore 1986).

Over the past few decades, environmental epidemiology has advanced signifi-
cantly, particularly with regard to exposure assessment methods, facilitating greater
use of these data in risk assessment. For example, the Agricultural Health Study
(AI1S) developed a pesticide exposure metric for use in the prospective cohort
study using data collected through selfreport questionnaire (Alavanja ef ol 1996).
Exposure assessment methods developed further over the course of the follow-up
of this cohort, and includes collection of additional biomonitoring data and other
information to validate and improve the original algorithm (Coble etal. 2005, 2011;
Thomas et al. 2010). In air pollution epidemiology, researchers and policy-makers
have been working together to make best use of available time-series data to assess
human health risk to particulate matter (PM,5) (Fann et al. 2011, 2012). In addi-
tion, researchers and policy-makers are looking beyond standard single chemical

Hum. Ecol. Risk Assess. Vol. 21, No. 6, 2015 1645

ED_002191_00025139-00002



K. Christensen ef al.

exposures in HFHRA, and are considering the role of multiple, comulative chemi-
cal exposures as well as non-chemical exposures such as psycho-social stressors on
health (Morello-Frosch and Shenassa 2006; Sexton and Hattis 2007). Given these
advancements, this is an auspicious time to re-commit to the use of epidemiology in
risk assessment to improve public health. For example, human data from modern
epidemiology studies can inform the identification of hazards for which an animal
model does not exist. These data can also inform estimates of risk in the low range
of exposure and in the species of interest, and aid in the characterization of risks in
sensitive populations (Burke 1995; Hertz-Picciotto 1995; Nachman et ¢ 2011; Samet
et al. 1998). Consequently, many federal and international agencies that perform
human health risk assessment state that epidemiological data should be preferen-
tially incorporated into risk assessments when available (USEPA 2005; IARC 2000;
NRC 2009).

Despite these recommendations, epidemiological data have been used in regu-
latory risk assessment relatively infrequently. For example, human data have been
used to support less than 10% of risk assessments in the U.S. Environmental Pro-
tection Agency’s (USEPA’s) Integrated Risk Information System (IRIS) program
(Persad and Cooper 2008), even in instances in which human data were avail-
able and could have been used more extensively in the risk assessment (Nach-
man et al. 2011; Persad and Cooper 2008). Concerns relating to the limitations
and perceived insensitivity of epidemiological methods to meet the demands of
risk assessment have been raised as a rationale against greater incorporation of
these data in HHRA. One major limitation of observational studies is the poten-
tial for errors in assigning exposure values to study participants, possibly leading
to misclassification of exposure and biased study results. Characterization of the
anticipated direction, and even the magnitude, of this potential bias may be able
to address this limitation. Another challenge involves the inadequate measure or
control of potentially confounding variables. We discuss how the phenomenon of
(strong) confounding such that study inference is incorrect is less common than
presumed in published environmental and occupational epidemiology studies, and
that there are strict criteria that must be met for a variable to bias study results in
this way (Blair ez al. 2007). Lastly, another misconception is that a non-linear or
non-monotonic exposure-response trend in an epidemiology study is evidence of
a non-causal relationship between exposure and disease. However, research from
multiple scientific disciplines has shown that many true exposure-response relations
are inherently non-linear or non-monotonic in nature, the identification of which
adds scientific value to the risk assessment (Conolly and Lutz 2004; Vandenberg
et al. 2012).

Understanding and constructively addressing the challenges noted above is
critical for moving the field of environmental public health forward. Observa-
tional studies of environmental and occupational exposures reflect “real world”
exposure—disease associations as opposed to experimentally controlled scenarios.
As such, risk assessment models will benefit from incorporating these data, when
appropriate. Situations in which the epidemioclogical data cannot be integrated into
risk models in an easy or straightforward manner will inevitably lead to informative
discussion within the multi-disciplinary team. In this article, we explore how data
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from epidemiology studies can make a key contribution to understanding hazard
and risk in human populations.

SPECIFIC ISSUES TO CONSIDER

Exposure Issues

Characterizing the degree to which humans come in contact with chemical, bi-
ological, radiological, or other agents in the environment or in the workplace is
challenging. An accurate and precise measure of human exposure must reflect the
timing, frequency, duration, and intensity of these exposures during a biologically
relevant time period (e.g, alifetime cancer risk, or the period of gestational suscep-
tibility). This may require extensive and, therefore, potentially expensive, exposure
measurement efforts. The importance of these efforts is underscored by method-
ological research thatindicates that misclassification asa result of incorrect exposure
measurement likely influences bias in epidemiology studies to a far greater extent
than confounding in epidemiology (Blair e «l 2007). The challenge of accurate and
precise human exposure assessment notwithstanding, the use of human exposure
information in human health risk assessment remains far superior to alternatives
(e.g., extrapolation from high-dose animal studies) (USEPA 2005, 2013; IARC 2000;
Schwartz 2002).

Exposure assessment approaches can vary widely across occupational and envi-
ronmental epidemiology studies. The type of disease or exposure under study (e.g.,
acute or chronic), study population (occupationally or environmentally exposed),
and the availability and feasibility of measurable exposure information will affect
the type and quality of epidemiological exposure assessment. The extent to which
epidemiology studies may contribute to a risk assessment will depend in large part
on the exposure assessment. Many perceived flaws or inadequacies of epidemiology
studies relate to the quality of the exposure assessment. These include the use of
ecologic (group-level) versus individual-level exposure information; the grouping of
exposure utilizing qualitative or semi-quantitative versus quantitative exposure cat-
egorization methods; and, the potential for error or mistakes in the measurement
or classification of exposure. We posit, however, that studies using these imperfect
methods may still inform risk assessment.

Assessment of Environmental and Occupational Exposures

Epidemiologists have a suite of exposure assessment approaches available to
characterize human exposure to occupational and environmental agents. These
include use of questionnaires; environmental or workplace measurement either
alone or in combination with exposure modeling (e.g, air dispersion modeling);
personal or biological exposure monitoring; and use of exposure assessment tools
such as job-exposure matrices. Using any of these exposure assessment methods,
the actual exposure of interest (i.e., the level of the agent or its active metabolite in
the target tissue at the critical window of time) is rarely known with certainty, but
available methods do allow the epidemiologist to rank or order participants in a
study with high accuracy, thus allowing valid (unbiased) estimation of risk.
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There are a variety of ways in which exposure assessment results may be utilized
to estimate risk. Qualitative exposure measures are the least information-intensive
approach, followed by semi-quantitative measures; quantitative measures are gen-
erally the most information intensive. In the experience of the authors, there may
be a perception that epidemiology studies utilizing qualitative or semi-quantitative
methods to categorize exposure are uninformative to the risk assessment process.
However, there are valid uses for these data. An example of a qualitative exposure
measure would be to characterize all workers in a particular job category as ex-
posed to a substance, and compare them to workers in a different job category,
considered to be “not exposed.” Often a wide variety of industrial hygiene data are
used to define exposure status for specific jobs or tasks within an industry. Such
exposure assignments were made by studies of exposure to perchloroethyene in the
dry cleaning industry; dry cleaners were classified as exposed, and launderers were
classified as unexposed (Eskenazi ef ¢l 1991; Gold et ¢l 2008; Raisanen et al. 2001).
Epidemiology studies in which exposure is based on a dichotomized categorization
(i.e., exposed and unexposed) can inform the potential for hazard (or harm), but
cannot support evaluation of exposure-response relationships without additional
sources of information. Importantly, in some instances where the database of in-
formation is limited, studies with qualitative exposure measures represent the “best
available” exposure measurement approach and may provide the only human data
on an important public health issue.

Semi-quantitative exposure measures may also be used in epidemiology stud-
ies. These measures reflect more detailed information on each subject’s indi-
vidual exposure than qualitative methods and allow for an ordinal categoriza-
tion (e.g., low, medium, high) based on knowledge of a variety of factors in-
cluding duration, frequency, and intensity of exposure, or based on knowledge
of relative exposures in different types of jobs. The use of semi-quantitative ex-
posure categories of increasing magnitude provides stronger evidence of a hu-
man health hazard than strictly qualitative (e.g., none, low, or high) approaches
and in some cases would allow evaluation of the relative exposure-response
relationship.

Quantitative exposure classification can increase the accuracy of exposure esti-
mates and should most closely represent the “true” (human) exposure experience.
However, it should be emphasized that quantitative estimates (e.g., individual air
concentrations of a chemical during an 8-hour work shift, or individual biomarkers
of a chemical) are notnecessarily the “true” exposure of interest, butstill a surrogate
for this generally unknowable value. With thatsaid, in addition to adding to the body
of evidence in a hazard identification evaluation, studies with quantitative exposure
data may inform the exposure-assessment phase of a risk assessment for a specific
target population and may be used to estimate exposure-response relationships in
greater detail for an exposed population.

A common misperception of environmental epidemiology studies is that they
must include individuallevel, quantitative exposure information in order to ac-
curately characterize exposure for use in risk assessment. However, even with a
complete lack of individual-level quantitative exposure measurements (i.e., only
group-level data are available), it may still be possible to apply externally derived
exposure data for the characterization of risk. For example, external information
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sources such as predictive models of exposure, literature-based exposure databases,
or geographical information systems may be used to verify exposure trends observed
on the group level, and even to develop individual-level exposure estimates in qual-
itative or semiquantitative categories (Henn ef ¢l 2010; Ritz and Costello 2006;
Teschke et al. 2002).

In summary, there are many ways to assess environmental exposures in epidemi-
ology studies, each with inherent strengths and weaknesses. Even relatively crude
qualitative measures of exposure such as “ever” or “never” exposed can be useful in
identifying hazards associated with an exposure, and semi-quantitative and quant-
tative measures can further be used to support exposure-response analyses. In the
next section, we discuss the implications of errors in the measurement of exposure,
and the ability to correctly discern the magnitude and direction of the risk estimate
despite these potential errors.

Exposure Measurement Error and Effect on Exposure-Outcome Associations

As described above, epidemiologists aspire to have exact dose or quantitative
exposure information on each individual in the study population, but often this
information is not feasible to obtain. Thus, nearly all exposure estimates are approx-
imations or surrogates of delivered dose and are assumed to reflect some degree
of error and misclassification (Smith 2002). Conceptually, it is useful to consider
exposure measurement error in epidemiology studies as the difference between the
“ideal” and the “actual” exposure estimate. The “error” is the difference between
what epidemiclogists would like to ideally measure and what is practically feasible
to measure (Savitz 2003). Different types of measurement error can arise from a
variety of sources. Some of these sources include analytical limitations (such as lim-
ited sensitivity of exposure measurement instruments resulting in more uncertainty
in concentration measurements), sampling from a non-representative time period,
and missing data. Appreciation of the different types of measurement error, and
their effects on epidemiological measures of association, is critical in judging the
influence of measurement error on the validity of the study as well as upon the
utility of a study to assess the relationship between exposure and health outcomes.
In the authors’ experience, many perceive that an error in measurement renders
the results of an epidemiology study unusable or unreliable. While that may be true
in some instances, much of the time the magnitude and direction of the error can
be predicted or characterized to allow accurate epidemiological inference (Smith
1988).

Measurement error is classified as either differential or non-differential with ref-
erence to the other comparison group. Non-differential error refers to an exposure
assessment error that is independent of the health outcome status of the partici-
pants. Differential error occurs when the error is dependent on a person’s outcome
status. Recall bias is an example of this, where individuals with disease may remem-
ber more details about previous exposures than healthy individuals in a case-control
study, or conversely the illness being examined may interfere with the ability of
an individual to recall and report information on past exposures. The manner in
which the misclassification is related to the disease outcome of interest influences
the confidence in the resulting effect estimate.
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Exposure misclassification bias can influence risk estimates derived from epi-
demiology studies, but the potential for error of this nature does not preclude the
use of an epidemiology study for human health risk assessment. Itis generally under-
stood that in most instances, although there are some exceptions, non-differential
error in exposure measurements (where the exposure error is independent of the
health outcome status) for a dichotomized exposure results in an attenuation of
the observed effect (i.e., bias toward the null value of the measure of association)
as well as inaccurate estimates of the precision of epidemioclogical effect estimates
(i.e., the standard error estimates are artificially small) (Blair e «l. 2007; Deddens
and Hornung 1994; Deklerk et ol 1989). However, this is not always true for con-
tinuous exposure measures, depending on the nature of the measurement error
{e.g., Berksonian bias; Armstrong 1990). Non-differential exposure measurement
error in otherwise well-conducted epidemiology studies, while undesirable, would
generally not be expected to create a false positive association (Correa-Villasenor
et al. 1995; Jurek et ol. 2008). That is, if the true odds ratio was actually 1.0 (no asso-
ciation between exposure and cutcome), non-differential exposure measurement
error is an unlikely explanation of a higher observed odds ratio such as 2.0. Sensitiv-
ity analyses such as assessing the effect estimates in relation to varying proportions
of study participants presumed to be misclassified would aid characterization of this
uncertainty in risk assessment. If the investigator has some knowledge about the
exposure measurement error, statistical inferences may also be directly adjusted to
account for this error (Stayner ef al. 2007).

Exposure estimates may also be evaluated as quantitative measure (continuous
data) or semi-quantitative (use of categorical variables). Classification of exposure
using an ordinal scale (such as 1, 2, and 3 for low, medium, and high exposure) can
be particularly useful for hazard identification or assessing relative trends but may
be of limited use for quantifying exposure-response relationships, particularly if
assumptions regarding homogeneous exposure and risk within these categories are
notmet Misclassification bias is a particular concern when continuous exposure data
are split into categories. For example, an unexposed participant may be mistakenly
classified as exposed based on an arbitrary dichotomous exposure cut-point. Errors
in exposure categorization can occur as a result of errors in data collection or data
entry, failure to recall an exposure in a self-reported exposure questionnaire, or
reliance on current exposure information as a proxy for exposures in the past,
among others factors. Misclassification into adjacent categories is more likely than
across several levels (i.e., between medium and high exposure versus low and high
exposure), and this misclassification can resultin biased and imprecise study results.

In summary, while errors in classifying exposures of individual study participants
occurs, methodological research into the effects of different types of classification
errors allows informed epidemiological (causal) inference. Therefore, even when
exposure measurement error is present, epidemiological data can still provide valu-
able information for risk assessment. Information is often available in epidemiology
studies that can help characterize the direction or magnitude of errors to estimate
their impact on the association between exposure and health cutcome. Such in-
formation may come from the broader literature on exposure assessment, from
methods papers on the study in question, or from supplemental information from
the researchers (such as that found in appendices or online supplements). These

1650 Hum. Ecol. Risk Assess. Vol. 21, No. 6, 2015

ED_002191_00025139-00007



Epidemiology in Risk Assessment: Challenges and Opportunities

C
A. General scheme
for confounding

B. Association of blood
tead concentration with
systolic blood pressure;
confounding by age

Blood
Legd e SBP

\/

Alcohol
C. Association of blood
lead concentration with
systolic blood pressure;
confounding by alcohol

Panel A: Graphical depiction of general scheme for required relation-
ships between exposure (E), disease (D), and potential confounder (C).
Panels B and C depict the association of blood lead concentration with
systolic blood pressure and potential relationships with age and alco-
hol consumption. Age and alcohol consumption both are associated
with increases in blood lead concentration (Falq et ol 2011; Hense et al.
1992; Lee et al 2005) and with systolic blood pressure (Marchi ef al.
2014; Scinicariello et ¢l 2011). However, alcohol, primarily wine, con-
tains lead (Ajtony et al. 2008), and adjustment for this source of lead
exposure may remove its contribution to the variation in blood lead
concentration. Thus, decisions regarding what confounders to adjust
for can be complicated.

Figure 1.

other sources of information may help clarify exposure-related issues, and thereby
aid in the use of these studies for risk assessment (Fann ez ¢/ 2011). Although limita-
tions in exposure assessment remains a challenge (Bailer 1999; Gordis 1988; Graham
et al. 1995), the uncertainty in exposure measurement in epidemiology studies is
likely to be small in comparison to the uncertainty in extrapolating from high doses
in experimental animals to the complex human experience (Hertz-Picciotto 1995;
Schwartz 2002; Smith 1988).

CONFOUNDING

Valid epidemiology studies must ensure that risk estimates from the factors (ex-
posures) of primary interest are not unduly influenced by the presence of other
risk factors, also known as confounders. Most of the major health outcomes influ-
enced by exposure to environmental chemicals have several contributing causes
(e, multifactorial etiology) and may cluster within specific groups defined by com-
mon characteristics such as age, sex, race, socioeconomic status, or lifestyle. It is,
therefore, important to account for potential differences in these factors between
groups being compared (e.g., cases and controls, exposed and unexposed).

As illustrated in Figure 1, Panel A, confounders are factors that are: (1) associated
both with the outcome, (2) and also with the exposure, (3) but do not mediate the
effect of the exposure on the disease process (i.e., be an intermediary factor in the
causal pathway) (Szklo and Nieto 2004). All three criteria must be met for a variable
to potentially confound the exposure—outcome association. For example, previous
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studies indicate that age and alcohol consumption are potential confounders of the
association between blood lead concentration and systolic blood pressure because
both factors are associated with exposure and outcome (Falq ¢t al. 2011; Hense et al.
1992; Lee et al 2005; Marchi ef ol 2014; Scinicariello ef al. 2011). Decisions about
confounding can be complicated, however; in this example, alcohol consumption
can be a source of lead exposure (Ajtony ef al. 2008). Therefore, adjustment for
alcohol consumption could remove some of the contribution to the increased risk
of high blood pressure due to blood lead concentration.

The potential for confounding including the inadequate control of confound-
ing (known as residual confounding) is often noted as an impediment to the use
of epidemiology studies in the evaluation of hazard and risk of an environmental
agent (Hertz-Picciotto 1995). Studies will often not evaluate confounding by every
possible known or hypothesized risk factor, in some cases simply because new or
newly suspected risk factors may be identified after a study was completed. Although
many factors may be suspected confounders, it is important to examine the avail-
able data (including previous studies on the same exposure and/or outcome) to
determine if confounding is truly a concern. In many instances, suspected con-
founding variables are not truly confounding the exposure-disease relation under
study because they do not meet the aforementioned requisite three criteria for
confounding.

The Evaluation of Confounding

To address potential confounding in epidemiology studies, efforts are needed
to ensure that comparison groups (e.g, exposed and unexposed, cases and con-
trols) are as similar as possible with the exception of the factor being evaluated
(Savitz 2003). Some epidemiology and toxicology studies attempt to control for
potential confounders through the randomization step of the experimental design
(.., similar distribution of potential confounders across animal exposure groups)
(Festing and Altman 2002). Since randomization is not generally feasible in oc-
cupational or environmental epidemiology studies, potential confounding can be
addressed through study design and statistical analysis. Potential confounders, such
as age, sex, and race, are often controlled by techniques such as defining exclu-
sion/inclusion criteria for subject recruitment, matching during study design and
recruitment, or restriction in the data collection or analysis phases. For example, if
age is suspected to be a confounder of a chemical being studied, a study might
include only those in a certain age range, or exposed and unexposed partici-
pants might be matched by age or age group (Aschengrau and Seage 2003; Last
2001). These design features allow investigators to select study subjects so that po-
tential confounders are distributed more equally among exposed and unexposed
groups.

When appropriate data have been collected, potential confounders also can be
controlled for during the data analysis phase by such methods as standardization,
stratification, or statistical modeling. Standardization and stratification are two meth-
ods that can be used to develop a summary risk estimate while accounting for dif-
ferences between comparison groups with respect to potential confounding charac-
teristics (Aschengrau and Seage 2003; Rothman et ¢/ 2008). The particular method
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or methods selected to control for confounding are determined by the type of data
available. For example, if vital statistics data (such as national or state mortality rates)
are examined, then standardization can be used to control for confounding by com-
paring rates in the population under study with the rates in the general population
using the same distributions for age, sex, and race. Controlling for confounding also
can be achieved through statistical adjustment in multivariate models, a technique
that easily allows simultaneous adjustment or stratification for several variables (As-
chengrau and Seage 2003). In effect, statistical adjustment for confounding creates
strata of individuals with similar values of the confounder for analysis. If the effect
estimates are meaningfully different when potential confounders are included or
not included in the model, then confounding may be present (often a difference
of roughly 4+/~10% in the effect estimate is considered evidence of confounding).
The ability to meaningfully adjust for confounders in an analysis is dependent on
the quality of the data, including the amount and type of measurement error in the
confounding variables that are being examined.

Although statistical modeling is a powerful tool for addressing potential
confounding, it is necessary to carefully select the factors to include in the
exposure-response models, rather than including every possible variable or to rely
solely on statistical criteria to determine which variables may be potential con-
founders. This is important because including extraneous risk factors in a regression
can reduce precision and even produce unintended confounding due to the inter-
relationship of the included covariates, resulting in a biased effect estimate. Causal
diagrams may be useful in judging whether including certain potential confounders
in the model is necessary (Greenland et al. 1999; Hernandez-Diaz et ¢l 2008). For a
more complete explanation of the use of causal diagrams in modeling decisions, see
these citations: Howards et ¢l. (2012), Schisterman ef «l. (2009), and VanderWeele
(2009).

Influence of Confounding on Effect Estimates

If a confounder is identified as a concern during the planning of a study, the
control of potential confounding may be relatively straightforward through aspects
of the design and analysis described above. Evaluating the role of confounding for
factors not considered in the design is more difficult, but stll possible. The first
consideration is whether there is any evidence to suggest potential confounding
and, if so, its influence (direction and magnitude) on the risk estimate. Recall that
all three criteria must be met (confounder must be associated with both the outcome
of interest and with the exposure, but the confounder must not mediate the effect
of the exposure on the disease process) in order for a variable to have a potential
confounding effect on the exposure—outcome relation of interest (Szklo and Nieto
2004). When all of the aforementioned three conditions for confounding are met,
the magnitude and direction of the bias depends on the strength and direction
of the associations between the confounder and both the exposure and also the
outcome of interest in a particular study, as well as the prevalence of the confounder
in the population of interest.

For a confounder to fully explain the association between exposure and out-
come, the confounder must have as great an influence on the relative risk of the
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outcome as the exposure of interest. For example, analyses of confounding in oc-
cupational studies have found that the associations of smoking with both exposure
and outcome must be moderately to strongly correlated before there is a change
in the estimated risk for the outcome (Blair et al 2007; Kriebel ef al. 2004). Even
for studies of occupational exposures and lung cancer risks, analyses that adjusted
for smoking rarely found that the adjusted relative risk was substantially different
from the unadjusted relative risk (e, odds ratios differed by no more than 0.3
in the studies evaluated; Blair et al. 2007). Researchers concluded that in the oc-
cupational studies they evaluated, relative risks for Iung cancer of 1.5 or higher
are unlikely to be entirely explained by uncontrolled confounding by smoking
behavior (Axelson and Steenland 1988). This is because the distribution of non-
smokers, moderate and heavy smokers must be very different between the exposed
group and comparison population for smoking to substantially change the effect
estimate.

Concerns about the influence of confounding on observed effect estimates may
arise for studies involving populations exposed to more than one chemical or pol-
lutant at a time. Co-exposures with moderate correlation should be considered
as potential confounders in statistical models, if they also are risk factors for the
health outcome under study and are not part of the exposure-to-response trajectory
(¢.e., mediators in the causal pathway). Use of multi-variable regression techniques
or other statistical tools such as factor analysis can isolate the exposure—disease
association of interest, while controlling for the effect of co-exposures. In addi-
tion, if more than one study is available to evaluate the exposure-response rela-
tionship, then consistency in the collection of studies, including those that did
or did not adjust for a particular co-exposure, can help determine if confound-
ing by a specific co-exposure is likely. Although every individual is exposed to
many agents, both chemical and non-chemical stressors, via various routes (oral,
inhalation, dermal), it is likely that only a small subset of possible exposures
would both be correlated with the exposure of interest, and also be risk factors
for the health outcome of interest. Recall that both associations must be present
at moderately strong correlations for confounding to occur. For example, Patel
et al. (2012) found that in the National Health and Nutrition Examination Survey,
biomarkers of exposure were generally not strongly correlated with each other; ex-
ceptions included compounds in the same chemical family (e.g., polychlorinated
biphenyls) that generally occur as mixtures in environmental media (Patel ez «l.
2012).

When a study population is exposed to multiple agents, and these exposures
are highly correlated (e.g., p > .80), it may be difficult to analytically disentangle
individual exposure effects. This issue has been encountered in studies of many
environmental contaminants, including air pollutants (Bell e al. 2007, 2009), drink-
ing water contaminants (Rivera-Nunez and Wright 2013), and certain pesticides
(Alavanja er el 2003; Bell et ol. 2007, 2009). In this situation, confounding may be
difficult to address with statistical analysis. However, one may be able to draw insights
from studies in other locations or exposure scenarios where the correlation between
the same or similar agents is lower (Bell ef «f. 2011). When two or more agents are
always encountered together, evaluating the risk of the combined exposure is a rel-
evant consideration for public health since they better reflect real-world exposure
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Figure 2. Examples of different exposure-response curves.

mixture scenarios and can offer some insight into potential combined effect of
multiple exposures on human health.

THE EXPOSURE-RESPONSE RELATIONSHIP

The relation between environmental or occupational exposures and human dis-
eases may take many different forms (linear or nondinear) (Figure 2). Critics may
question the internal validity of an epidemiology study and its utility for quantitative
risk assessment when the observed exposure-response relationship is not linear, or
even non-monotonic. However, the observation of a non-monotonic curve in an
individual study may be biologically plausible and can be used to inform a risk as-
sessment (Wigle and Lanphear 2005). Further, the shape of the exposure-response
relationship observed in a given study may depend on numerous factors including:
population characteristics, the statistical model used, range of exposure, statistical
power, and, as discussed previously, other factors including exposure measurement
error {Brauer ef al. 2002; Park and Stayner 2006). Consideration as to whether an
observed exposure-response curve is a true representation of the underlying rela-
tion or an artifact of study design or conduct (e.g., unbalanced observations per
exposure category) requires expert consideration of many different factors.

The simplest exposure—response curve shape is linear, in which level of expo-
sure is directly proportional to level of response. This type of relationship has been
seen, for example, in epidemiology studies of methylmercury exposure and effects
on neurodevelopment (NRC 2000). However, non-linear exposure-response curves
are often observed in environmental and occupational epidemiology studies. A
supra-linear relation in which exposure-response is linear at lower doses but attenu-
ated at high doses, leading to an observed response plateau, is a frequently observed
phenomenon in epidemiology (Blair et al. 1998; Cocco et al. 2001; Gibb et al. 2000;
Hayes et al. 1996; Hertz-Picciotto and Smith 1993; Hornung and Meinhardt 1987;
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Schubauer-Berigan et al. 2011; Stayner et al. 1993; Steenland ez al. 1998, 1999, 2001).
For example, birth weight and neurodevelopmental measures both have been ob-
served to have a supralinear relationship with maternal and children’s blood lead
levels less than 10 pg/ml, respectively (Tellez-Rojo et al. 2006; Zhu et ol. 2010). This
plateau in the response curve may be due to factors such as exposure misclassifica-
tion or a depletion of susceptible individuals in the population, or may represent
a true biological phenomenon, such as receptor saturation or enzyme depletion
(Stayner et al. 2003). Non-linearity may also arise in groups due to different expo-
sure profiles, such as higher intensity and shorter duration of exposure, compared
with lower intensity and longer duration (Lubin et «f 2008).

Another type of exposure-response relationship is a “U-shaped” curve in which
the exposure-response association is lower in the mid-exposure range than at either
the low or high ends of the exposure range. For example, both low and high levels of
exposure to manganese in early life is related to risk of adverse neurodevelopmental
effects, while exposures in the mid-range are notassociated with these effects (Henn
et al. 2010). Similarly, a U-shaped association between cadmium exposure and pe-
ripheral artery disease has been shown among non-smoking women (Tellez-Plaza et
al. 2010).

Exposure-response relations may also exhibit an apparent threshold effect. This
has been observed in the relation between PCBs exposure and neuropsychological
function (Haase et ol 2009), where no response is observed below a certain dose
(possibly due to compensatory mechanisms or lack of statistical power), but the
exposure-response association is significant above a certain level of exposure. In
epidemiology, as in experimental toxicology studies, however, itis difficult to detect
effects at low exposures, and thus it is often difficult to establish the presence or
absence of thresholds.

A statistical trend test is often used to examine the change in response over an
entire range of exposures. For categorical analyses, differences in effect levels are
compared between exposure groups. Statistically significant effect estimates may be
observed in the highest exposure categories, with smaller and non-statistically signifi-
cant effect estimates observed in the intermediate and/or lower exposure categories.
This may be incorrectly interpreted to mean that the “trend” only starts at the point
that statistical significance is reached, or, if statistical significance is not achieved for
any exposure category, that there is an absence of an association between exposure
and outcome. It may be the case that a monotonic trend is present, but statistical
testing of individual grouped categories does not have sufficient power to demon-
strate statistical significance compared to the more powerful trend test. As noted
previously, misclassification of exposure and confounding variables may also result
in bias, the result of which may be an inability to detect a true exposure-response
relationship.

As noted above, several factors related to exposure and response can influence
the observed relationship between the two factors. First, the range of exposures
evaluated affects the shape of the curve. For example, no association may be ob-
served if exposures in the study population were very low or were very similar
among all study participants; however, an increasing trend in risk may exist over
a wider exposure range. For categorical exposure comparisons, the choice of the
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referent group (t.e., the unexposed or a combination of those with no and low
exposure) also affects comparisons made with higher exposure levels and can al-
ter the exposure-response relationships (Stewart and Correa-Villasenor 1991). If
there are positive associations at low exposure levels, inclusion of individuals with
low to moderate exposure in the referent group (either by study design or due to
exposure misclassification) can greatly influence effect estimates for the upper ex-
posure categories, and decrease the slope of the observed exposure-response curve.
Similarly, decisions as to how to categorize the exposure groups (e.g., quartiles, or
any exposure versus none) may affect the observed exposure-response relationship
(Greenland 1995; Schulz ez ol 2001; Van Wijngaarden 2005). For example, if the
range within each exposure category is too broad the overall relationship may be
obscured.

Exposure measurement error introduces variation and can lead to bias in the
observed exposure-response relationship. For example, when exposure is classified
into more than two categories, non-differential misclassification of those with the
highest exposure into the lowest exposure group and vice versa, could result in a
systematic bias in the observed risk estimates, and incorrectly influence the direction
of a trend across exposure categories (Dosemeci et ol 1990). In addition, the re-
sponse may also vary depending on such factors as the timing and dose of exposure,
genetic susceptibility, and other factors that can influence absorption, metabolism
and excretion rates across individuals; such variation will affect the shape of the
exposure-response curve in a given population (Rothman 1976).

In summary, certain environmental and occupational exposure-response trends
may truly be non-linear or non-monotonic in nature. Therefore, the chservation
of a non-linear exposure-response relationship is not necessarily an indicator of
a flaw in the study. Studies that report such non-linear curves can be informa-
tive and should not be dismissed; they may provide information on both hazard
identification and exposure-response. Users of such epidemiological data can gain
further insight into the reported relationships by graphing or plotting the curve
when such data are available to do so. Such visual representation vields infor-
mation on the range of the data overall and within each group, as well as the
magnitude of differences between the groups. Additionally, interpretation of other
evidence including mechanistic understanding of the key biological events can pro-
vide further insight on the shape of exposure-response curves and inform causal
inference.

CONCLUSION

Epidemiological data provide valuable contributions to all stages of health risk
assessment, and should be used whenever possible to help reduce uncertainty in
risk estimates. This article outlined some considerations when using epidemiologi-
cal data for risk assessment, relating to exposure measurements, confounding, and
the shape of the observed exposure-response relationship. The improvements in
epidemiological methods seen in studies published in recent years make this an aus-
picious time to re-commit to the use of epidemiology in risk assessment to improve

public health.
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